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ABSTRACT 
A finite element method employing Galerkin's approach is developed to analyze free convection heat 
transfer in axisymmetric fluid saturated porous bodies. The method is used to study the effect of aspect 
ratio and radius ratio on Nusselt number in the case of a proous cylindrical annulus. Two cases of isothermal 
and convective boundary conditions are considered. The Nusselt number is always found to increase with 
radius ratio and Rayleigh number. It exhibits a maximum when the aspect ratio is around unity; maximum 
shifts towards lesser aspect ratios as Rayleigh number increases. Results are compared with those in the 
literature, wherever available, and the agreement is found to be good. 
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NOMENCLATURE 
A aspect ratio 
ψ streamline function 
ε porosity of the medium 

average radius of an element 
u, v, w velocity in r, θ, and z directions 
β thermal expansion coefficient 
Km thermal conductivity of the saturated medium 
N1, N2, N3 shape functions for the triangular element 

ri, ro inner and outer radius of the cylinder 
T temperature 
μ viscosity 
ν kinamatic viscosity 
ρ density 
α thermal diffusivity 
κ permeability 
p pressure 

INTRODUCTION 
Vertical porous enclosures with cylindrical geometry are encountered in many situations. 
Insulated pipe lines, cryogenic containers, insulation of high temperature gas cooled reactor 
vessels are some examples involving porous bodies of an axisymmetric geometry. 

A knowledge of the variation of heat transfer with aspect ratio would be very useful in 
determining optimum insulation thickness. Nath and Satyamurthy1 used a finite difference 
method to evaluate the variation of Nusselt number with aspect ratio, radius ratio and Rayleigh 
number. They provide results in the range 50 ≤ Ra ≤ 500; 0.2 ≤ A ≤ 8 and 0.25 ≤ R* ≤ 8. Little 
other attention has been paid in the literature to study the dependence of Nusselt number on 
the above parameters. Prasad and Kullacki2 carried out a study of curvature effects on 
temperature and velocity fields in a vertical porous annulus. They considered a wide range of 
Rayleigh numbers, Ra up to 10,000. 
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Several authors have studied the limitations of Darcy's law. Cheng3 in his review article 
mentioned that the Darcy's law is valid when the Darcy number based on the height is less than 
10-3. Tong and Subramanian5 undertook a boundary layer analysis in vertical porous 
enclosures. They determined the validity of Darcy's law in terms of E (Ra Da/A). They indicated 
the limitation as E < 10-4. Lauriat and Prasad7 examined relative importance of inertia 
and viscous forces on natural convection in porous media. They found, from their combined 
Brinkman and Forchheimer model, that the Darcy model is limited to Ra* (λ Ra( Da)< 102 for 
^ Da = 10-4 and A = 1 where ^ is the viscosity ratio and λ is the conductivity ratio. 

The present work uses Darcy's flow equations with continuity and energy to model the 
convective heat transfer in fluid saturated axisymmetric porous bodies. Free convection in a 
vertical cylindrical annulus is studied using the method and heat transfer results are obtained 
in the range 50 ≤ Ra ≤ 200; 0.2 ≤ A ≤ 8 and 0.1 ≤ R* ≤ 8. The case of an inner cold isothermal 
wall and a hot outer wall with the two horizontal insulated walls is studied and the Nusselt 
number values are compared with published results1. The agreement was found to be good. 

Next, the case of a hot isothermal inner wall with a convection boundary condition on the 
outer wall is considered. With an aspect ratio of unity, heat transfer results at different radius 
ratios are obtained. 

FINITE ELEMENT FORMULATION 
A cylindrical, saturated porous annulus of inner radius ri and outer radius ro is shown in the 
Figure 1. The coordinate system is also shown. Since the body is axysmmetric, two coordinates 
r and z are sufficient to describe the system completely. 
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We assume that, 
(i) The porous medium considered is saturated by a fluid. 
(ii) The porous medium is homogeneous and isotropic. 
(iii) Fluid properties are constant except density variation which produces a buoyancy force. 
(iv) The fluid and porous medium is everywhere in local thermodynamic equilibrium. 
(v) Additional viscous and inertial terms are, for low Darcy numbers, neglected because of 

their small magnitudes compared to other terms. 
(vi) Dispersion effects are neglected. 
Under these assumptions, the governing equations in cylindrical coordinates are written as: 

Continuity equation: 

Darcy's law in the r direction: 

Darcy's law in z direction: 

Energy equation: 

Equation of state: 
ρ=ρ∞(1-β(T-T∞)) (5) 

We introduce the stream function ψ defined by, 

The continuity equation is automatically satisfied by the introduction of ψ. One governing 
equation is thus eliminated. 

Eliminating the variable p from (2) and (3) and incorporating ψ we obtain, 

Using v=μ/p, we obtain, 

Substituting u and w in terms of ψ in (4), we obtain, 



832 R. RAJAMANI ET AL. 

Equations (9) and (10) are the two governing equations to be formulated into finite element 
matrix equations. Each equation has both the variables ψ and T, we thus have two coupled 
equations which have to be solved simultaneously. 

The simplex 3 noded triangular element is used for the analysis. The variation of temperature 
T and ψ inside the element are given by, 

T = N1T1 + N2T2 + N3T3 
= [N]{T} (11) 

ψ = N1ψ1 + N2ψ2 + N3ψ3 

= [N]{ψ} (12) 

where N1, N2, and N3 are the shape functions given by, 

Using Gallerkin's method, (9) becomes, 

where dV = 2πr dr dz for axisymmetric geometries. Integration of first two terms gives, 

The third term in the parenthesis is, 

Similarly, use of Galerkin's method for (10) yields, 

Integrating, the first two terms in the parenthesis become, 
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where jk is the side along which the convective boundary condition exists. 

Equations (15) through (20) yield two simultaneous matrix equations for an element. These 
matrix equations are assembled to obtain the total matrix equation for the domain. Initially the 
value of ψ is taken to be zero for the first iteration. The values of {T} obtained by solving the 
first set of equations are then used to solve the second set of global matrix equations. These 
values of {ψ} are then used for the next iteration in the calculation of {T}. The two equations 
are thus solved by iteration. For the solutions to converge it is necessary that a fine mesh is used. 
Convergence is obtained by maintaining the error limit to 10-5. The values of {ψ} at the wall 
are forced to zero (since u = 0 at x = 0). The temperature at the wall nodes are also incorporated. 

Convergence is more difficult for the axisymmetric case than for simple two dimensional one8. 
For high Rayleigh numbers convergence becomes easy for very fine meshes. 

RESULTS AND DISCUSSION 
Consider the cylindrical porous annulus of Figure 1. Let the inner wall of radius ri be isothermal 
at a temperature T0 and the outer wall radius r0 be at T1 > T0. The two horizontal walls are 
adiabatic. One half of the section in Figure 1 is sufficient for the analysis. The rectangular region 
of length H and breadth (ro—ri) is discretized into a finite element mesh. For larger Rayleigh 
numbers a finer mesh is required. 

The Rayleigh number in the present case is defined as, 

where L=ro—ri. 
The boundary conditions of u = 0 at r = ri and r = r0 and w = 0 at z = 0 and z = H are incorporated 

by forcing ψ to be zero on all four boundaries. The temperature on the two vertical walls are 
forced to be To and Ti. 

Solution of the two finite equations by iteration, as described earlier, yields steady state 
temperature at all nodes. 

The mean Nusselt number at the cold wall is calculated using the equation 

Curve fitting is used for the calculation of the derivative at each wall node. 
Aspect ratio for the cylinder, A, is defined as A=H/L and radius ratio as R* = (ro—ri)/ri. 
Nusselt number values for Ra = 100 and R* = 1 are compared with the results available in 

both References 1 and 2. The comparison is shown in Table 1. 
Values obtained with finer discretization differed only marginally from the values in the table. 
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Table 1 Comparison of Nu results 

Aspect ratio 

3 
5 
8 

Ref [1] 

3.81 
3.03 
2.45 

Ref [2] 

3.70 
3.00 
2.35 

Present calculation 

3.868 
3.025 
2.403 

Table 2 Variation of Nusselt number with radius ratio 

R* 

0.25 
1 
4 
8 

Ra = 50 

1.791 
2.344 
4.016 
5.466 

A = 0.6 

Ra = 100 

3.073 
3.985 
6.342 
8.140 

Ra = 200 

5.108 
6.41 
8.915 
9.89 

Ra = 50 

1.619 
2.105 
3.636 
5.000 

A = 5 

Ra = 100 

2.349 
3.025 
3.636 
6.615 

Ra = 200 

3.694 
4.63 
6.73 
7.774 

Variation of Nusselt number with aspect ratio 
The variation of Nusselt number with aspect ratio for a radius ratio of one is shown in the 

Figure 2. Curves for Ra = 50, 100 and 200 are shown. It is seen that each curve reaches a maxima 
for an aspect ratio around unity. The maxima shifts towards lower aspect ratios for higher 
Rayleigh numbers. 

Variation of Nusselt number with radius ratio 
The variation of Nusselt number with radius ratio for the two aspect ratios of 0.6 and 5 is 

shown in the Table 2. 
It is seen that for a given Ra and aspect ratio, Nusselt number always increases with R*. The 

maximum values of Nusselt number for different R* were calculated using an aspect ratio of unity. 



HEAT TRANSFER IN AXISYMMETRIC POROUS BODIES 835 

The variation of with 1/R* is shown in Figure 3. It is seen that increases with 
R* for every Rayleigh number. Curves for Ra = 50, 100 and 200 are shown. as R*→0, which is 
the case of plane slab, the curves approach asymptotic values of 

The variation of with Rayleigh number is shown in Figure 4 for different R*. It is seen 
that always increases with Rayleigh number. The increase is steep for lower Ra and 
becomes small for Ra>200. 
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Many practical situations involve a porous cylindrical annulus with an inner hot surface and 
a convection boundary condition on the outer surface. This case is considered next with 
assumption that the inner wall is isothermal. Figure 5 shows the variation of with 1/R* 
for this case. It is seen that the variation is similar to that for an isothermal outer wall. A heat 
transfer coefficient of h = 0.4186J/s m2 °C has been taken. The values of are lower for 
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lower values of h. As h increased above 1, reaches an asymptotic maximum. Figure 6 gives 
the variation of with h for Ra= 100 and R* = 1. 

CONCLUSIONS 
A finite element model to analyze free convection heat transfer in vertical porous enclosures 
was developed. The case of a porous cylindrical annulus with an isothermal inner wall and outer 
wall with a convection boundary condition or an isothermal condition were considered. The 
variation of Nusselt number with aspect ratio, radius ratio and Rayleigh number are studied. 
Nusselt number always increases with radius ratio as well as Rayleigh number and attains a 
maximum for an aspect ratio around unity. Results have been compared with those available 
in literature and the agreement is found to be good. 
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